Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Synthesis, characterization and crystal structure of a novel Os(II)-supported tungstoarsenate $[HAsW_7O_{28}Os(dmso)_3]^{6-}$

Li-Hua Bi^{a,*}, Bao Li^a, Li-Xin Wu^{a,*}, Kui-Zhan Shao^b, Zhong-Min Su^b

^a State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China ^b Faculty of Chemistry, Key Lab of Polyoxometalate Science of Ministry of Education, Institute of Functional Material Chemistry, Northeast Normal University, Changchun 130024, PR China

ARTICLE INFO

Article history: Received 13 August 2008 Received in revised form 16 September 2008 Accepted 2 October 2008 Available online 15 October 2008 Keywords: Synthesis Crystal structure

Crystal structure Osmium Tungstoarsenate Three-dimensional architecture

ABSTRACT

Reaction of tri-lacunary Keggin tungstoarsenate with osmium complex Os(dmso)₄Cl₂ under mild condition led to the formation of a novel Os (II)-supported tungstoarsenate Na₅(NH₄)[HASW₇O₂₈Os(dm-so)₃] · 15H₂O (**1a**). Single-crystal X-ray diffraction analysis shows that compound **1a** crystallizes in the monoclinic space group *P*2₁/c (no. 14) with *a* = 14.9166(12) Å, *b* = 23.6935(19) Å, *c* = 16.5349(14) Å, β = 92.7950(10)°, *V* = 5836.9(8) Å³, *Z* = 4 with *R*₁ = 0.0453. The crystal structure reveals two features: (1) the polyanion [HASW₇O₂₈Os(dmso)₃]⁶⁻ (**1**) consists of a Os(dmso)₃ unit linked to a tungstoarsenate fragment {HAsW₇O₂₈} via two Os–O–W bonds and one Os–O–As bond resulting in an assembly with C_s symmetry, which represents a novel mode of Os-coordination to a polyoxoanion framework; (2) 3D architecture assembled by the polyanion **1** and sodium linkers. In addition, the compound **1a** was well characterized by the multinuclear NMR (¹³C, ¹H), IR spectroscopy, UV–vis spectroscopy, elemental analysis, and cyclic voltammetry (CV).

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Polyoxometalates (POMs) constitute an intriguing and distinctive class of metal-oxygen cluster species with an enormous structural variety and fascinating properties following the potential applications in catalysis, bio- and nanotechnology, medicine, material science, and so on [1–3]. POMs have been known about 200 years ago since the time of Berzelius [4]. However, POMs have been developed rapidly in recent years and the strong efforts are considered towards the modification and functionalization of POMs by incorporation or coordination of metal atoms or organometallic moieties to constitute novel structural types with function and properties [5–14].

The noble-metal substituted POMs have attracted increasing attention in general and Pd-, Pt-substituted POMs in particular due to excellent catalytic properties for the selective and efficient transformation of organic substrates and the oxidation of alkanes and alkenes by peroxides [15–18]. Recently, several structurally well-characterized Pd-substituted POMs have been reported, e.g., palladium(II)-substituted isopolytungstate [Pd₂W₁₀O₃₆]^{8–} [19], palladium(II)-substituted tungstoantimonate(III) [Cs₂Na(H₂O)₁₀Pd₃ (α -Sb^{III}W₉O₃₃)₂]^{9–} [20], palladium(II)-substituted tungstosilicate

* Corresponding authors. Fax: +86 431 85193421.

doi:10.1016/j.jssc.2008.10.005

E-mail addresses: bilihua@email.jlu.edu.cn (L.-H. Bi), wulx@ilu.edu.cn (L.-X. Wu).

$$\begin{split} & [Cs_2K(H_2O)_7Pd_2WO(H_2O)(A-\alpha-SiW_9O_{34})_2]^{9-} \ [21] \text{ and tungstoarsenates } & [Na_2(H_2O)_2PdWO(H_2O)(\alpha-AsW_9O_{33})_2]^{10-}, \text{ and } [Cs_2Na(H_2O)_8 \\ & Pd_3(\alpha-AsW_9O_{33})_2]^{9-} \ [22]. & More recently, the Pd and Pt in high oxidation states substituted POMs were also been presented, e.g., \\ & [Pd^{IV}O(OH)WO(OH_2)(PW_9O_{34})_2]^{13-} \ [23], \ [Pt^{IV}O(H_2O)(PW_9O_{34})_2]^{16-} \\ & [24], \ [\alpha-SiPt_2^{IV}W_{10}O_{40}]^{8-} \ [25], \ [H_2Pt^{IV}V_9O_{28}]^{5-} \ [26]. \end{split}$$

Another noble metal ruthenium-substituted POMs are exploited rapidly recently because of the unique redox-active nature and catalytic properties of the element ruthenium [27–29]. In the last couple of years, some researches have engaged in a large number of studies on the catalytic properties of rutheniumcontaining POMs and it has been demonstrated that Ru-containing POMs have high reactivity and selectivity in the catalytic oxidation of a variety of organic substrates by O₂ and H₂O₂ [30-33]. To date, several different Ru precursors have been employed to synthesize Ru-substituted POMs, such as RuCl3 · n-H₂O, [Ru^{II}(H₂O)₆][C₇H₇SO₃]₂, Ru(acac)₃, *cis*-Ru(dmso)₄Cl₂, [Ru(arene) $Cl_2]_2$ (arene = benzene, *p*-cymene), etc. that has resulted in some unexpected structural class of Ru-containing POMs, e.g., $[HW_9O_{33}Ru_2^{II}(dmso)_6]^{7-}$ [34], $[Ru(dmso)_3(H_2O)XW_{11}O_{39}]^{6-}$ (X = Ge, Si) [35], $[P_2W_{17}O_{61}{Ru(C_6H_6)(H_2O)}]^{8-}$ [36], $[\{PW_{11}O_{39}]$ (X = (arene)}]₂{WO₂}]⁸⁻ [37,38], $[\{Ru(C_6H_6)(H_2O)\}\{Ru(C_6H_6)\}(\gamma-XW_{10}O_{36})]^4-(X = Si, Ge)$ [39], $[\{Ru(C_6H_6)(H_2O)\}\{Ru(C_6H_6)\}(XW_9)$ O_{34})]⁴⁻(X = Si, Ge) [40], etc.

However, parallel to the Pd-, Pt-, Ru-substituted POMs, the Ossupported POMs are extremely rare so far. There are very few reports on the studies of Os-containing POMs. In 2006, Su et al.

^{0022-4596/\$ -} see front matter © 2008 Elsevier Inc. All rights reserved.

investigated the electronic and redox properties of osmiumnitrido-functionalized POM species, [PW₁₁O₃₉(OsN)]²⁻ by the DFT (density functional theory) calculations [41]; Proust et al. studied the reaction of $K_{10}[\alpha_2 - P_2 W_{17} O_{61}]$ or $K_{10}[\alpha_1 - P_2 W_{17} O_{61}]$ with [Bu₄N][OsCl₄N] in a water/methanol mixture and characterized the compounds $[\alpha_2 - P_2 W_{17} O_{61} \{ Os^{VI} N \}]^{7-}$ and $[\alpha_1 - P_2 W_{17} O_{61} \}$ {OsN}]⁷⁻ by multinuclear (¹⁸³W, ¹⁵N) NMR, EPR, IR, and UV/Vis fingerprints [42]; Proust et al. synthesized the Os^{II} derivative of the monovacant $[\alpha$ -PW₁₁O₃₉]⁷⁻, $[PW_{11}O_{39}{Os(dmso)_3(H_2O)}]^{5-}$, and characterized this compound by ³¹P NMR,¹H NMR, IR spectroscopies and DFT study [43]. To the best of our knowledge, there is only one report on the structurally characterized Os^{II}supported heptamolybdate $[Os(II)(dmso)_3Mo_7O_{24}]^{4-}$ by Neumann et al. [44], in which the osmium (II) center is coordinated to three oxo-groups of the molybdenum-oxo core and to the sulfur atoms of three terminal dmso ligands. The same authors showed that the [Os(II)(dmso)₃Mo₇O₂₄]⁴⁻ compound was active and stable catalysts for the aerobic oxidation of alcohols because the selective oxidation of alcohols to carbonyl compounds is a very important transformation in organic synthesis. However, as far as we know, the crystal structure of the Os^{II}-supported polytungstates has never been reported. Moreover, the potentially attractive catalytic properties of such species are a strong motivation to start this kind of research.

Herein, we report on the synthesis and X-ray crystal structure of a novel Os^{II}-supported tungstoarsenate and its multinuclear NMR and electrochemical properties.

2. Experimental section

2.1. Chemicals and methods

All chemicals were of high-purity grade, purchased from Aldrich and used as received without further purification. Deionised water was used throughout. Na₈[HAsW₉O₃₄] · 11H₂O and cis-[Os(dmso)₄Cl₂] were synthesized according to the literature and characterized by IR spectra [45,46]. The elemental analyses of As, W, Os, and Na were carried out by means of an ICP-AES analyzer. The elemental analyses of N, S, C, and H were performed on a Perkin-Elmer 2400 CHN elemental analyzer. The IR spectrum (2% sample, in KBr) was recorded on a Thermo Nicolet NEXUS 670 FT-IR spectrometer. UV-vis absorption spectrum was obtained using a UV-VIS-NIR spectrophotometer (UV-3600). Electrochemical measurements were carried out on CHI 660C electrochemical workstation at room temperature under nitrogen atmosphere. A three electrode electrochemical cell was used with a glassy carbon electrode (GCE) as the working electrode, a platinum wire as the counter and an Ag /AgCl reference electrode.

2.2. Synthesis

A 0.1 g (0.18 mmol) sample of *cis*-Os(dmso)₄Cl₂ was dissolved in 20 mL of buffer solution (pH 6.0, 0.5MNaAc+0.5 MHAc) by addition of 0.5 g (0.19 mmol) of Na₈[HAsW₉O₃₄] · 11H₂O. This solution was heated to 80 °C for 1 h and then cooled to room temperature. The solution was filtered and then 0.5 mL of 1.0 M NH₄Cl solution was added. This solution was allowed to evaporate in an open beaker at room temperature. A yellow crystalline product started to appear after a week. Evaporation was continued until the solvent approached the solid product (yield 0.35 g, 70% based on As). Anal. Calcd (found) for **1a**: Na 4.3 (4.5), Os 7.2 (7.3), W 48.8 (47.9), As 2.8 (2.8), S 3.6 (3.7), C 2.7 (2.5), H 2.0 (2.2) %.

NMR of **1a** in D₂O at 293 K: ¹³C: δ 45.2(2C), 45.8(2C), 46.0(2C) ppm; ¹H: δ 3.28(6H), 3.35(6H), 3.45(6H) ppm. For

comparison, dmso in D₂O at 293 K: ¹³C: δ 38.8 ppm; ¹H: δ 2.6 ppm. UV–vis (λ , nm): 228, 186. IR for Na₅(NH₄) [HAs-W₇O₂₈Os(dmso)₃] · 15H₂O (**1a**): 1725(m), 1643(w) 1571(w), 1438(m), 1404(m), 1303(w), 1111(m), 1083(w), 1018(m), 966(m), 939(m), 891(s), 863(sh), 839(s), 738(m), 685(m), 523(m), and 432(m)cm⁻¹. The IR spectrum of **1a** shows the expected S–O stretching vibrations of coordinated dmso at ~1111, ~1083, and ~1018 cm⁻¹.

Table 1

Crystal data and structure refinement for $Na_5(NH_4)[HAsW_7O_{28}Os(dmso)_3] \cdot 15H_2O$ (1a)

Empirical formula	As ₄ C ₂₄ H ₂₁₂ N ₄ Na ₂₀ Os ₄ O ₁₈₄ S ₁₂ W ₂₈	
Formula weight	10554.78	
Temperature	293(2)K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Unit cell dimensions	a = 14.9166(12)Å	$lpha=90.00^\circ$
	b = 23.6935(19)Å	$\beta = 92.7950(10)^{\circ}$
	c = 16.5349(14)Å	$\gamma = 90.00^{\circ}$
Volume	5836.9(8)Å ³	
Ζ	4	
Density (calculated)	$3.003 \mathrm{Mg}\mathrm{m}^{-3}$	
Absorption coefficient	$16.708 \mathrm{mm}^{-1}$	
F(0 0 0)	4776	
Data/restraints/parameters	13623/12/638	
Goodness-of-fit on F^2	1.050	
Final <i>R</i> indices $[I > 2 \text{sigma}(I)]$	${}^{a}R1 = 0.0453, {}^{b}wR2 = 0.1133$	
R indices (all data)	${}^{a}R1 = 0.0747, {}^{b}wR2 = 0.1247$	

^a $R_1 = (\sum |F_o| - |F_c|) / (\sum |F_c|).$

^b $wR_2 = \sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]^{1/2}.$

Table 2

Selected bond lengths [Å] and angles [°] for $Na_5(NH_4)[HAsW_7O_{28}Os(dm-so)_3]\cdot 15H_2O~(1a)$

As1-015	1.663 (8)	As1-022	1.724 (8)
As1-028	1.663 (8)	As1-01	1.663 (9)
W2-05	1.903 (9)	W2-06	2.278 (9)
W2-07	1.732 (10)	W2-08	1.728 (9)
W2-09	1.940 (9)	W2-010	2.187 (8)
W3-010	2.175 (9)	W3-09	1.936 (8)
W3-011	1.741 (8)	W3-012	1.756 (9)
W3-013	1.906 (8)	W3-014	2.286 (8)
W4-013	1.991 (8)	W4-014	2.207 (7)
W4-015	2.252 (9)	W4-016	1.898 (8)
W4-017	1.735 (8)	W4-018	1.728 (9)
Os1-020	2.088 (9)	Os1-023	2.068 (9)
Os1-028	2.118 (8)	S1-029	1.493 (9)
030-S2	1.469 (10)	Os1-S2	2.238 (3)
031–S3	1.493 (10)	Os1-S3	2.226 (3)
Os1–S1	2.233 (3)	Na1-030	2.410 (11)
Na1-033	2.404 (11)	Na1-035	2.488 (12)
Na1-032	2.407 (17)	Na2-036	2.363 (12)
Na1-017	2.539 (11)	Na2-029	2.400 (11)
Na2-035	2.317 (11)	Na2-030	2.479 (12)
Na2-037	2.398 (15)	Na3-033	2.301 (12)
Na2-031	2.413 (11)	Na3-032	2.457 (16)
Na3-029	2.242 (11)	Na4-08	2.344 (10)
Na3-036	2.460 (13)	Na4-012	2.422 (11)
Na4-018	2.407 (11)		
028-As1-01	109.8 (5)	028-As1-015	112.9 (5)
015-As1-022	107.7 (4)	01-As1-022	106.9 (4)
028-As1-022	110.3 (4)	01-As1-015	108.9 (5)
08-W2-07	102.3 (5)	08-W2-05	97.3 (4)
08-W2-06	166.6 (4)	08-W2-010	90.5 (4)
08-W2-09	101.8 (4)	017-W4-016	100.7 (4)
018-W4-017	102.1 (4)	017-W4-014	160.8 (4)
017-W4-013	94.3 (4)	018-W4-015	170.1 (4)
017-W4-015	87.7 (4)		

X-ray crystallography. X-ray single-crystal data for **1a** was set on the end of a glass capillary for indexing and intensity data collection at 293 K on the a Rigaku/MSC mercury diffractometer with graphite monochromated MoK α radiation ($\lambda = 0.71073$ Å). Direct methods were used to solve the structures and to locate the heavy atoms (SHELXS97). Then the remaining atoms were found from successive difference maps (SHELXL97). All the non-hydrogen atoms were refined anisotropically. Further details of the X-ray structural analysis are given in Table 1. Selected bond lengths and angles are listed in Table 2.

3. Results and discussion

3.1. Synthesis and structure

The Os-supported tungstoarsenate Na₅(NH₄)[HAsW₇O₂₈Os (dmso)₃] · 15H₂O (**1a**) has been synthesized in good yield in a simple one-pot procedure by reaction of [HAsW₉O₃₄]⁸⁻ with *cis*-Os(dmso)₄Cl₂ in aqueous medium (pH 6.0) and isolated as the sodium–ammonium salt. The polyoxoanion [HAsW₇O₂₈Os (dmso)₃]⁶⁻ (**1**) consists of an Os(dmso)₃ group attached to a tungstoarsenate fragment resulting in an open assembly with C_s symmetry (Fig. 1). The Os(dmso)₃ unit is coordinated via two

Fig. 1. (A) Combined polyhedral/ball and stick representation of $[HAsW_7O_{28}Os^{II}(dmso)_3]^{6-}$ (1). The WO₆ octahedra are red and the AsO₄ tetrahedron is green. The color code of the balls is: osmium (wine), sulfur (yellow), carbon (gray), and oxygen (red). Hydrogen atoms are omitted for clarity. (B) Ball and stick representation of the tungsten-oxo core of $[HAsW_7O_{28}Os^{II}(dmso)_3]^{6-}$ (1). The color code of the balls is: tungsten (black), arsenic (green), osmium (wine), sulfur (yellow), carbon (gray), and oxygen (red). Hydrogen atoms are omitted for clarity.

Os–O–W bonds and one Os–O–As bond to the polyanion backbone of **1**. The structure of the polyanion **1** is closely related to the Ru-supported tungstoarsenate $[HAsW_7O_{28}Ru(dmso)_3]^{6-}$ and the isostructural tungstophosphate $[HPW_7O_{28}Ru(dmso)_3]^{6-}$ [47].

Polyanion **1** represents the first structurally characterized Ossupported polytungstate by single-crystal X-ray diffraction. There is only one report in the literature on Os(dmso)-supported polytungstate $[\alpha$ -PW₁₁O₃₉{Os(dmso)₃(H₂O)}]^{5–}, but this species could only be characterized by IR, ¹H NMR, ³¹P NMR, and DFT. In latter structure, Os(dmso)₃ unit is grafted to two nonequivalent oxygen atoms of the lacuna $[PW_{11}O_{39}]^{7-}$, which plays the bidentate role for this structure. However, in **1**, Os(dmso)₃ fragment is bound to three nonequivalent oxygen atoms of polyanion fragment {HAsW₇O₂₈}: two oxo-groups are from the tungsten-oxo framework and one is from the hetero group As–O. Such bonding of an (organo) Os fragment involving actively also the hetero group of the polyanion has never been observed before.

Recently, Neumann and co-workers reported the same $Os(dm-so)_3$ fragment in the heptamolybdate polyanion $[Os(dmso)_3-Mo_7O_{24}]^{4-}$ [44]. In this compound the osmium (II) center is coordinated to three oxo-groups of the molybdenum-oxo core and to the sulfur atoms of three terminal dmso ligands. In our structure the osmium (II) center is also coordinated to three oxo-groups from tungstoarsenate polyanion {HAsW₇O₂₈} with the distances of 2.068–2.118 Å and three sulfur atoms from three terminal dmso ligands with the distances of 2.226–2.238 Å. The above results indicate that three of the originally four dmso ligands in *cis*-Os(dmso)₄Cl₂ appear to be rather strongly bound to the Os (II) center as they remain attached during synthesis of **1a** (which involved heating to 80 °C for 1 h in buffer solution). The same case has been observed for the Ru(dmso)-supported POMs [34,35,47].

Synthesis of **1** was performed by reaction of $[HAsW_9O_{34}]^{8-}$ with *cis*-Os(dmso)₄Cl₂ in about equimolar ratio in buffer solution (pH: 6.0). Therefore, the reaction mechanism must involve metal Os coordination and conversion of the trilacunary to the tungstoarsenate fragment ({ $HAsW_9O_{34}$ } \rightarrow { $HAsW_7O_{28}$ }) following the loss of W₂O₆. Close inspection of **1** indicates that removal of the Os(dmso)₃ group would result in the hypothetical polyanion {HAsW₇O₂₈}, which is composed of one edge-shared W₃O₁₃ triad (W5, W6 and W7) and a half-ring of four edge-shared WO_6 octahedra (W1, W2, W3 and W4) and they are connected via corners and this assembly is stabilized by the central AsO₄ group. As a result, the three tungsten centers of the W₃O₁₃ triad have one terminal oxo ligand whereas the remaining four tungsten atoms have two, cis-related terminal oxo groups. The same observations are seen in $[HXW_7O_{28}Ru(dmso)_3]^{6-}$ (X = P and As) [47]. However, we have not been able to isolate {HAsW₇O₂₈} as an independent species yet, indicating that $cis-M(dmso)_4Cl_2$ (M = Ru, Os) is essential for the formation of {HAsW₇O₂₈}.

In addition, polyanion **1** can also be synthesized from the source precursors of As₂O₅, Na₂WO₄ and *cis*-Os(dmso)₄Cl₂ by the mixture of all the chemicals in one pot under the same experimental condition as for the synthesis of **1a**, as based on the IR spectrum.

Bond valence sum (BVS) [48] calculations for **1** suggest that the μ_2 -oxo group O10 bridging tungsten centers W2 and W3 (Fig. 1) is monoprotonated as the bond valence sum for O10 is s = 0.98 which is the value expected for a hydroxo group (s = 1). Therefore, the charge of the polyanion **1** must be -6. The -6 charge of **1** is balanced by one NH₄⁺ and five Na⁺ ions in the solid state. All counterions are distributed evenly around the polyanion and are bound to some of its terminal oxo ligands and water molecules of hydration as well as the oxo atoms of the three dmso molecules coordinated to osmium. Interestingly, three Na ions (Na1, Na2, Na3) form helix sodium chain which is composed of NaO₆

octahedra and NaO₅ square-pyramidal cone all sharing edges with their neighboring polyhedron (see Fig. 2). The polyanion 1 is distributed between the sodium chains and connected to the chains by the oxo atoms (W4-O17-Na1, S1-O29-Na2/Na3, S2-O30-Na1/Na2, S3-O31-Na2), leading to a 2D network-like structure (network-1, see Fig. 2). Moreover, the other sodium atoms Na4, Na5, and Na6 connected each other (Na4-O41-Na6, Na4-O40-Na5) by sharing the corner are linked to two polyanions 1 forming a unprecedented pseudosandwich-type tungstoarsenate functionalized by Os(dmso)₃ groups (Na4-O18-W4, Na4-012-W3, Na5-025-W6, Na5-037-W7, Na6-026-W7, Na6-O12-W3, Na6-O19-W5) (see Fig. 3A). In addition, the pseudosandwich-type tungstoarsenates further form 2D structure by the Na4-O8-W2 bond (network-2, see Fig. 3B). The other interesting feature is that network-1 and network-2 are connected each other to form the 3D structure by the Na atoms (see Fig. 4). According to our knowledge, such structure has never been observed for the Ru/Os-supported POMs so far and is rarely observed in the POMs chemistry.

Fig. 2. Combined polyhedral/ball and stick representation of the 2D structure of compound **1a**. The color code is same as in Fig. 1. Hydrogen atoms, NH⁺₄, Na4, Na5, Na6, and free water molecules are omitted for clarity.

3.2. NMR spectra

In order to determine the structures of **1a** further, we performed the multinuclear, room temperature NMR studies on **1a** redissolved in D_2O . As shown in Fig. 5, the ¹³C-NMR and ¹H-NMR spectra of **1a** show three signals at 45.2, 45.8, and 46.0 ppm with ratio of 2:2:2 and 3.28, 3.35, and 3.45 ppm with a ratio of 6:6:6, respectively. This is in complete agreement with the structure of **1**, which indicates the presence of three types of carbon atoms (C1/C2, C3/C4, and C5/C6) and hydrogen atoms coordinated to the carbon atoms in **1a**. This means that all three dmso ligands in **1a** are magnetically inequivalent in solution, but

Fig. 4. Combined polyhedral/ball and stick representation of the 3D structure of compound **1a**. The color code is same as in Fig. 1. Hydrogen atoms, NH⁺₄, and free water molecules are omitted for clarity.

Fig. 3. (A) Combined polyhedral/ball and stick representation of pseudosandwich-type tungstoarsenate. (B) Combined polyhedral/ball and stick representation of the 2D structure of pseudosandwich-type tungstoarsenate. The color code is same as in Fig. 1. Hydrogen atoms, NH⁺₄, Na1, Na2, Na3, and free water molecules are omitted for clarity.

Fig. 5. (A) Room temperature ¹³C NMR spectrum of $[HAsW_7O_{28}Os^{II}(dmso)_3]^{6-}$ (1) in D₂O. (B) Room temperature ¹H NMR spectrum of [HAsW₇O₂₈Os^{II}(dmso)₃]⁶⁻ (1) in D_2O .

the two methyl groups within each dmso molecule are magnetically equivalent. The only reasonable explanation for this is hindered rotation of the dmso ligands around the Os-S bond. The same results have been observed in [HXW₇O₂₈Ru(dmso)₃]⁶⁻ (X = P and As) [47].

3.3. Cyclic voltammetry

To determine the redox properties of compound 1a, we studied the electrochemical behavior of 1a in the buffer solution. Fig. 6A shows the typical cyclic voltammetric behaviors of 1a at scan rate 10 mV s^{-1} in the pH 2.0 (0.5 M Na₂SO₄+H₂SO₄) buffer solution. It can be seen that in the potential range 0.2 to-0.6 V on a GCE two redox peaks appear and the mean peak potentials $E_{1/2} = (E_{pa}+E_{pc})/2$ are -0.44V (I-I') and -0.53V (II-II') (vs Ag/AgCl), respectively. The two peaks I–I' and II–II' may be attribute to the redox of the $W^{VI/V}$ in the polyanion framework. The CVs of **1a** in same pH medium at different scan rates are shown in Fig. 6B. The peak currents of **1a** are linearly proportional to the square root of the scan rates, taking the oxidation I and the reduction peak II' of 1a as representative, as shown in the inset of Fig. 6B. This indicates that the redox processes are diffusion-controlled.

Fig. 6. (A) CVs of 1.0 mM 1a in 0.5 M Na_2SO_4 + H_2SO_4 at pH 2.0 with different potential limits: -0.5 and -0.6 V. Scan rate: 10 mV s⁻¹. (B) CVs of 1.0 mM 1a in 0.5 M Na₂SO₄+H₂SO₄ at pH 2.0 at scan rates of 10, 30, 50, 80, 100, 150, 200, 300, 400, and 500 mV s^{-1} . The inset shows the relationship of the square root of scan rates vs. the oxidation peak currents I and reduction peak currents II'.

Fig. 7. UV-Vis electronic spectrum in aqueous solutions for 1a within a range of 180-400 nm, $1.1 \times 10^{-5} \text{ mol } \text{L}^{-1}$ in ultraviolet region.

3.4. Electronic spectroscopy

The UV-Vis electronic spectrum of compound 1a is displayed in Fig. 7. In the wavelength range between 180 and 400 nm the two strong absorption bands with maximum around 186 and 228 nm are observed. The peak at 186 nm is assigned to $Od \rightarrow W$ charge transition and the other peak at 228 nm is assigned to $Ob(c) \rightarrow W$ charge transition, which are the characteristic charge transfer bands from oxygen to tungsten in the POM framework.

4. Conclusions

In summary, we have synthesized and structurally characterized Os^{II}-supported tungstoarsenate for the first time. The novel polyanion [HAsW₇O₂₈Os(dmso)₃]⁶⁻ (**1**) consists of a Os(dmso)₃ unit linked to a polyanion {HAsW₇O₂₈}fragment via two Os–O–W bonds and one Os–O–As bond resulting in an assembly with C_s symmetry. The solid state structure of **1a** consists of the polyanion **1** linked by Na⁺ cations to constitute a 3D architecture.

Supporting information and structure details

Crystallographic data for the structure reported in this paper in the form of CIF file have been deposited with the ICSD team, FIZ Karlsruhe, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (crysdata@fiz-karlsruhe.de) by quoting the depository number CSD 419761 (http://www.ccdc.cam.ac.uk/products/ csd/deposit/).

Acknowledgment

The authors acknowledge the financial support of the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University.

References

- [1] C.L. Hill, Chem. Rev. 98 (1998) 1-389 (Special thematic issue on polyox-ometalates).
- [2] J.J. Borrás-Álmenar, E. Coronado, A. Müller, M.T. Pope (Eds.), Polyoxometalate Molecular Science, Kluwer, Dordrecht, The Netherlands, 2004.
- [3] H.L. Li, H. Sun, W. Qi, M. Xu, L.X. Wu, Angew. Chem. Int. Ed. 46 (2007) 1300.
 [4] J. Berzelius, Pogg. Ann. 6 (1826) 369.
- [5] A. Proust, R. Thouvenot, P. Gouzerh, Chem. Commun. 16 (2008) 1837.
- [6] C.P. Pradeep, D.L. Long, G.N. Newton, Y.F. Song, L. Cronin, Angew. Chem. Int. Ed. 47 (2008) 4388.
- [7] Y.F. Song, D.L. Long, L. Cronin, Angew. Chem. Int. Ed. 46 (2007) 3900.
- [8] D.L. Long, E. Burkholder, L. Cronin, Chem. Soc. Rev. 36 (2007) 105.
- [9] C.L. Hill, J. Mol. Catal. A-Chem. 262 (2007) 1.
- [10] C. Qin, X.L. Wang, E.B. Wang, Z.M. Su, Inorg. Chem. 47 (2008) 5555.
- [11] H. Liu, C. Qin, Y.G. Wei, L. Xu, G.G. Gao, F.Y. Li, X.S. Qu, Inorg. Chem. 47 (2008) 4166.

- [12] G.G. Gao, L. Xu, X.S. Qu, H. Liu, Y.Y. Yang, Inorg. Chem. 47 (2008) 3402.
- [13] A.X. Tian, J. Ying, J. Peng, J.Q. Sha, Z.G. Han, J.F. Ma, Z.M. Su, N.H.H.Q. Jia, Inorg. Chem. 47 (2008) 3274.
- [14] R.G. Cao, S.X. Liu, L.H. Xie, Y.B. Pan, J.F. Cao, Y.H. Ren, L. Xu, Inorg. Chem. 46 (2007) 3541.
- [15] W. Adam, P.L. Alsters, R. Neumann, C.R. Saha-Moller, D. Seebach, A.K. Beck, R. Zhang, J. Org. Chem. 68 (2003) 8222.
- [16] W. Adam, P.L. Alsters, R. Neumann, C.R. Saha-Moller, D. Sloboda-Rozner, R. Zhang, J. Org. Chem. 68 (2003) 1721.
- [17] V. Kogan, Z. Aizenshtat, R. Neumann, New J. Chem. 26 (2002) 272.
- [18] R. Neumann, A.M. Khenkin, D. Juwiler, H. Miller, M.J. Gara, Mol. Catal. A-Chem. 117 (1997) 169.
- [19] S.J. Angus-Dunne, R.C. Burns, D.C. Craig, G.A. Lawrance, J. Chem. Soc. Chem. Commun. (1994) 523.
- [20] L.-H. Bi, M. Reicke, U. Kortz, B. Keita, L. Nadjo, R.J. Clark, Inorg. Chem. 43 (2004) 3915.
- [21] L.-H. Bi, U. Kortz, B. Keita, L. Nadjo, H. Borrmann, Inorg. Chem. 43 (2004) 8367.
 [22] L.-H. Bi, U. Kortz, B. Keita, L. Nadjo, L. Daniels, Eur. J. Inorg. Chem. 15 (2005)
- 223 E-11 Di, O. Koltz, D. Kelta, E. Nadjo, E. Daniels, Edi J. morg. circlin 15 (2005) 3034.
- [23] T.M. Anderson, W.A. Neiwert, M.L. Kirk, P.M.B. Piccoli, A.J. Schultz, T.F. Koetzle, D.G. Musaev, K. Morokuma, R. Cao, C.L. Hill, Science 306 (2004) 2074.
- [24] T.M. Anderson, R. Cao, E. Slonkina, B. Hedman, K.O. Hodqson, K.I. Hardcastle, W.A. Neiwert, S.X. Wu, M.L. Kirk, S. Knottenbelt, E.C. Depperman, B. Keita, L. Nadjo, D.G. Musaev, K. Morokuma, C.L. Hill, J. Am. Soc. Chem. 127 (2005) 11948.
- [25] U. Lee, H.-C. Joo, K.-M. Park, T. Ozeki, Acta Crystallogr. Sect. C 59 (2003) 152.
- [26] U. Lee, H.-C. Joo, K.-M. Park, S.S. Mal, U. Kortz, B. Keita, L. Nadjo, Angew. Chem. Int. Ed. 47 (2008) 793.
- [27] T. Naota, H. Takaya, S.-I. Murahashi, Chem. Rev. 98 (1998) 2599.
- [28] Y.V. Geletii, B. Botar, P. Koeqerler, D.A. Hillesheim, D.G. Musaev, C.L. Hill,
- Angew. Chem. Int. Ed. 47 (2008) 3896. [29] C.N. Kato, A. Shinohara, N. Moriya, K. Nomiya, Catal. Commun. 7 (2006) 413.
- [30] R.G. Finke, C.X. Yin, Inorg. Chem. 44 (2005) 4175.
- [31] R. Neumann, M. Dahan, J. Am. Chem. Soc. 120 (1998) 11969.
- [32] R. Neumann, M. Dahan, Nature 388 (1997) 353.
- [33] R. Neumann, A.M. Khenkin, M. Dahan, Angew. Chem. Int. Ed. Engl. 34 (1995) 1587.
- [34] L.-H. Bi, F. Hussain, U. Kortz, M. Sadakane, M.H. Dickman, Chem. Commun. (2004) 1420.
- [35] L.-H. Bi, U. Kortz, B. Keita, L. Nadjo, Dalton Trans. (2004) 3184.
- [36] Y. Sakai, A. Shinohara, K. Hayashi, K. Nomiya, Eur. J. Inorg. Chem. 1 (2006) 163.
 [37] V. Artero, D. Laurencin, R. Villanneau, R. Thouvenot, P. Herson, P. Gouzerh, A. Proust, Inorg. Chem. 44 (2005) 2826.
- [38] D. Laurencin, R. Villanneau, P. Herson, R. Thouvenot, Y. Jeannin, A. Proust, Chem. Commun. (2005) 5524.
- [39] L.-H. Bi, E.V. Chubarova, N.H. Nsouli, M.H. Dickman, U. Kortz, B. Keita, L. Nadjo, Inorg. Chem. 45 (2006) 8575.
- [40] L.-H. Bi, U. Kortz, M.H. Dickman, B. Keita, L. Nadjo, Inorg. Chem. 44 (2005) 7485.
- [41] L.K. Yan, Z. Don, W. Guan, S.Q. Shi, Z.M. Su, Eur. J. Inorg. Chem. 24 (2006) 5126.
- [42] C. Dablemont, C.G. Hamaker, R. Thouvenot, Z. Sojka, M. Che, E.A. Maatta, A. Proust, Chem. A-Eur. J. 12 (2006) 9150.
- [43] D. Laurencin, R. Villanneau, H. Gerard, A. Proust, J. Phys. Chem. A 110 (2006) 6345.
- [44] A.M. Khenkin, L.J.W. Shimon, R. Neumann, Inorg. Chem. 42 (2003) 3331.
- [45] L.H. Bi, R.D. Huang, J. Peng, E.B. Wang, Y.H. Wang, C.W. Hu, J. Chem. Soc. Dalton Trans. 2 (2001) 121.
- [46] P.G. Antonov, Y.N. Kukushkin, V.I. Konnov, Y.P. Kostokov, Koord. Khim. 6 (1980) 1585.
- [47] L.-H. Bi, M.H. Dickman, U. Kortz, I. Dix, Chem. Commun. (2005) 3962.
- [48] I.D. Brown, D. Altermatt, Acta Cryst. B 41 (1985) 244.